#include "config.h"
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include "../include/asoundlib.h"
#include <sys/time.h>
#include <math.h>
 
#ifndef ESTRPIPE
#define ESTRPIPE ESPIPE
#endif
 
static char *device = "plughw:0,0";         
static snd_pcm_format_t format = SND_PCM_FORMAT_S16;    
static unsigned int rate = 44100;           
static unsigned int channels = 1;           
static unsigned int buffer_time = 500000;       
static unsigned int period_time = 100000;       
static double freq = 440;               
static int verbose = 0;                 
static int resample = 1;                
static int period_event = 0;                
 
static snd_pcm_sframes_t buffer_size;
static snd_pcm_sframes_t period_size;
static snd_output_t *output = NULL;
 
static void generate_sine(const snd_pcm_channel_area_t *areas, 
              snd_pcm_uframes_t offset,
              int count, double *_phase)
{
    static double max_phase = 2. * M_PI;
    double phase = *_phase;
    double step = max_phase*freq/(double)rate;
    unsigned char *samples[channels];
    int steps[channels];
    unsigned int chn;
    int format_bits = snd_pcm_format_width(format);
    unsigned int maxval = (1 << (format_bits - 1)) - 1;
    int bps = format_bits / 8;  
    int phys_bps = snd_pcm_format_physical_width(format) / 8;
    int big_endian = snd_pcm_format_big_endian(format) == 1;
    int to_unsigned = snd_pcm_format_unsigned(format) == 1;
    int is_float = (format == SND_PCM_FORMAT_FLOAT_LE ||
            format == SND_PCM_FORMAT_FLOAT_BE);
 
    
    for (chn = 0; chn < channels; chn++) {
        if ((areas[chn].first % 8) != 0) {
            printf("areas[%u].first == %u, aborting...\n", chn, areas[chn].first);
            exit(EXIT_FAILURE);
        }
        samples[chn] = (((unsigned char *)areas[chn].addr) + (areas[chn].first / 8));
        if ((areas[chn].step % 16) != 0) {
            printf("areas[%u].step == %u, aborting...\n", chn, areas[chn].step);
            exit(EXIT_FAILURE);
        }
        steps[chn] = areas[chn].step / 8;
        samples[chn] += offset * steps[chn];
    }
    
    while (count-- > 0) {
        union {
            float f;
            int i;
        } fval;
        int res, i;
        if (is_float) {
            fval.f = sin(phase);
            res = fval.i;
        } else
            res = sin(phase) * maxval;
        if (to_unsigned)
            res ^= 1U << (format_bits - 1);
        for (chn = 0; chn < channels; chn++) {
            
            if (big_endian) {
                for (i = 0; i < bps; i++)
                    *(samples[chn] + phys_bps - 1 - i) = (res >> i * 8) & 0xff;
            } else {
                for (i = 0; i < bps; i++)
                    *(samples[chn] + i) = (res >>  i * 8) & 0xff;
            }
            samples[chn] += steps[chn];
        }
        phase += step;
        if (phase >= max_phase)
            phase -= max_phase;
    }
    *_phase = phase;
}
 
static int set_hwparams(snd_pcm_t *handle,
            snd_pcm_hw_params_t *params,
            snd_pcm_access_t access)
{
    unsigned int rrate;
    snd_pcm_uframes_t size;
    int err, dir;
 
    
    if (err < 0) {
        printf(
"Broken configuration for playback: no configurations available: %s\n", 
snd_strerror(err));
        return err;
    }
    
    if (err < 0) {
        printf(
"Resampling setup failed for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    
    if (err < 0) {
        printf(
"Access type not available for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    
    if (err < 0) {
        printf(
"Sample format not available for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    
    if (err < 0) {
        printf(
"Channels count (%u) not available for playbacks: %s\n", channels, 
snd_strerror(err));
        return err;
    }
    
    rrate = rate;
    if (err < 0) {
        printf(
"Rate %uHz not available for playback: %s\n", rate, 
snd_strerror(err));
        return err;
    }
    if (rrate != rate) {
        printf("Rate doesn't match (requested %uHz, get %iHz)\n", rate, err);
        return -EINVAL;
    }
    
    if (err < 0) {
        printf(
"Unable to set buffer time %u for playback: %s\n", buffer_time, 
snd_strerror(err));
        return err;
    }
    if (err < 0) {
        printf(
"Unable to get buffer size for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    buffer_size = size;
    
    if (err < 0) {
        printf(
"Unable to set period time %u for playback: %s\n", period_time, 
snd_strerror(err));
        return err;
    }
    if (err < 0) {
        printf(
"Unable to get period size for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    period_size = size;
    
    if (err < 0) {
        printf(
"Unable to set hw params for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    return 0;
}
 
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams)
{
    int err;
 
    
    if (err < 0) {
        printf(
"Unable to determine current swparams for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    
    
    if (err < 0) {
        printf(
"Unable to set start threshold mode for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    
    
    if (err < 0) {
        printf(
"Unable to set avail min for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    
    if (period_event) {
        if (err < 0) {
            printf(
"Unable to set period event: %s\n", 
snd_strerror(err));
            return err;
        }
    }
    
    if (err < 0) {
        printf(
"Unable to set sw params for playback: %s\n", 
snd_strerror(err));
        return err;
    }
    return 0;
}
 
 
static int xrun_recovery(snd_pcm_t *handle, int err)
{
    if (verbose)
        printf("stream recovery\n");
    if (err == -EPIPE) {    
        if (err < 0)
            printf(
"Can't recovery from underrun, prepare failed: %s\n", 
snd_strerror(err));
        return 0;
    } else if (err == -ESTRPIPE) {
            sleep(1);   
        if (err < 0) {
            if (err < 0)
                printf(
"Can't recovery from suspend, prepare failed: %s\n", 
snd_strerror(err));
        }
        return 0;
    }
    return err;
}
 
 
static int write_loop(snd_pcm_t *handle,
              signed short *samples,
              snd_pcm_channel_area_t *areas)
{
    double phase = 0;
    signed short *ptr;
    int err, cptr;
 
    while (1) {
        generate_sine(areas, 0, period_size, &phase);
        ptr = samples;
        cptr = period_size;
        while (cptr > 0) {
            if (err == -EAGAIN)
                continue;
            if (err < 0) {
                if (xrun_recovery(handle, err) < 0) {
                    exit(EXIT_FAILURE);
                }
                break;  
            }
            ptr += err * channels;
            cptr -= err;
        }
    }
}
 
 
static int wait_for_poll(snd_pcm_t *handle, struct pollfd *ufds, unsigned int count)
{
    unsigned short revents;
 
    while (1) {
        poll(ufds, count, -1);
        if (revents & POLLERR)
            return -EIO;
        if (revents & POLLOUT)
            return 0;
    }
}
 
static int write_and_poll_loop(snd_pcm_t *handle,
                   signed short *samples,
                   snd_pcm_channel_area_t *areas)
{
    struct pollfd *ufds;
    double phase = 0;
    signed short *ptr;
    int err, count, cptr, init;
 
    if (count <= 0) {
        printf("Invalid poll descriptors count\n");
        return count;
    }
 
    ufds = malloc(sizeof(struct pollfd) * count);
    if (ufds == NULL) {
        printf("No enough memory\n");
        return -ENOMEM;
    }
        printf(
"Unable to obtain poll descriptors for playback: %s\n", 
snd_strerror(err));
        return err;
    }
 
    init = 1;
    while (1) {
        if (!init) {
            err = wait_for_poll(handle, ufds, count);
            if (err < 0) {
                    err = 
snd_pcm_state(handle) == SND_PCM_STATE_XRUN ? -EPIPE : -ESTRPIPE;
                    if (xrun_recovery(handle, err) < 0) {
                        exit(EXIT_FAILURE);
                    }
                    init = 1;
                } else {
                    printf("Wait for poll failed\n");
                    return err;
                }
            }
        }
 
        generate_sine(areas, 0, period_size, &phase);
        ptr = samples;
        cptr = period_size;
        while (cptr > 0) {
            if (err < 0) {
                if (xrun_recovery(handle, err) < 0) {
                    exit(EXIT_FAILURE);
                }
                init = 1;
                break;  
            }
                init = 0;
            ptr += err * channels;
            cptr -= err;
            if (cptr == 0)
                break;
            
            
            err = wait_for_poll(handle, ufds, count);
            if (err < 0) {
                    err = 
snd_pcm_state(handle) == SND_PCM_STATE_XRUN ? -EPIPE : -ESTRPIPE;
                    if (xrun_recovery(handle, err) < 0) {
                        exit(EXIT_FAILURE);
                    }
                    init = 1;
                } else {
                    printf("Wait for poll failed\n");
                    return err;
                }
            }
        }
    }
}
 
 
struct async_private_data {
    signed short *samples;
    snd_pcm_channel_area_t *areas;
    double phase;
};
 
static void async_callback(snd_async_handler_t *ahandler)
{
    signed short *samples = data->samples;
    snd_pcm_channel_area_t *areas = data->areas;
    snd_pcm_sframes_t avail;
    int err;
    
    while (avail >= period_size) {
        generate_sine(areas, 0, period_size, &data->phase);
        if (err < 0) {
            exit(EXIT_FAILURE);
        }
        if (err != period_size) {
            printf("Write error: written %i expected %li\n", err, period_size);
            exit(EXIT_FAILURE);
        }
    }
}
 
static int async_loop(snd_pcm_t *handle,
              signed short *samples,
              snd_pcm_channel_area_t *areas)
{
    struct async_private_data data;
    snd_async_handler_t *ahandler;
    int err, count;
 
    data.samples = samples;
    data.areas = areas;
    data.phase = 0;
    if (err < 0) {
        printf("Unable to register async handler\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; count < 2; count++) {
        generate_sine(areas, 0, period_size, &data.phase);
        if (err < 0) {
            exit(EXIT_FAILURE);
        }
        if (err != period_size) {
            printf("Initial write error: written %i expected %li\n", err, period_size);
            exit(EXIT_FAILURE);
        }
    }
        if (err < 0) {
            exit(EXIT_FAILURE);
        }
    }
 
    
    while (1) {
        sleep(1);
    }
}
 
 
static void async_direct_callback(snd_async_handler_t *ahandler)
{
    const snd_pcm_channel_area_t *my_areas;
    snd_pcm_uframes_t offset, frames, size;
    snd_pcm_sframes_t avail, commitres;
    snd_pcm_state_t state;
    int first = 0, err;
    
    while (1) {
        if (state == SND_PCM_STATE_XRUN) {
            err = xrun_recovery(handle, -EPIPE);
            if (err < 0) {
                exit(EXIT_FAILURE);
            }
            first = 1;
        } else if (state == SND_PCM_STATE_SUSPENDED) {
            err = xrun_recovery(handle, -ESTRPIPE);
            if (err < 0) {
                exit(EXIT_FAILURE);
            }
        }
        if (avail < 0) {
            err = xrun_recovery(handle, avail);
            if (err < 0) {
                exit(EXIT_FAILURE);
            }
            first = 1;
            continue;
        }
        if (avail < period_size) {
            if (first) {
                first = 0;
                if (err < 0) {
                    exit(EXIT_FAILURE);
                }
            } else {
                break;
            }
            continue;
        }
        size = period_size;
        while (size > 0) {
            frames = size;
            if (err < 0) {
                if ((err = xrun_recovery(handle, err)) < 0) {
                    exit(EXIT_FAILURE);
                }
                first = 1;
            }
            generate_sine(my_areas, offset, frames, &data->phase);
            if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) {
                if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) {
                    exit(EXIT_FAILURE);
                }
                first = 1;
            }
            size -= frames;
        }
    }
}
 
static int async_direct_loop(snd_pcm_t *handle,
                 signed short *samples ATTRIBUTE_UNUSED,
                 snd_pcm_channel_area_t *areas ATTRIBUTE_UNUSED)
{
    struct async_private_data data;
    snd_async_handler_t *ahandler;
    const snd_pcm_channel_area_t *my_areas;
    snd_pcm_uframes_t offset, frames, size;
    snd_pcm_sframes_t commitres;
    int err, count;
 
    data.samples = NULL;    
    data.areas = NULL;  
    data.phase = 0;
    if (err < 0) {
        printf("Unable to register async handler\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; count < 2; count++) {
        size = period_size;
        while (size > 0) {
            frames = size;
            if (err < 0) {
                if ((err = xrun_recovery(handle, err)) < 0) {
                    exit(EXIT_FAILURE);
                }
            }
            generate_sine(my_areas, offset, frames, &data.phase);
            if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) {
                if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) {
                    exit(EXIT_FAILURE);
                }
            }
            size -= frames;
        }
    }
    if (err < 0) {
        exit(EXIT_FAILURE);
    }
 
    
    while (1) {
        sleep(1);
    }
}
 
 
static int direct_loop(snd_pcm_t *handle,
               signed short *samples ATTRIBUTE_UNUSED,
               snd_pcm_channel_area_t *areas ATTRIBUTE_UNUSED)
{
    double phase = 0;
    const snd_pcm_channel_area_t *my_areas;
    snd_pcm_uframes_t offset, frames, size;
    snd_pcm_sframes_t avail, commitres;
    snd_pcm_state_t state;
    int err, first = 1;
 
    while (1) {
        if (state == SND_PCM_STATE_XRUN) {
            err = xrun_recovery(handle, -EPIPE);
            if (err < 0) {
                return err;
            }
            first = 1;
        } else if (state == SND_PCM_STATE_SUSPENDED) {
            err = xrun_recovery(handle, -ESTRPIPE);
            if (err < 0) {
                return err;
            }
        }
        if (avail < 0) {
            err = xrun_recovery(handle, avail);
            if (err < 0) {
                return err;
            }
            first = 1;
            continue;
        }
        if (avail < period_size) {
            if (first) {
                first = 0;
                if (err < 0) {
                    exit(EXIT_FAILURE);
                }
            } else {
                if (err < 0) {
                    if ((err = xrun_recovery(handle, err)) < 0) {
                        exit(EXIT_FAILURE);
                    }
                    first = 1;
                }
            }
            continue;
        }
        size = period_size;
        while (size > 0) {
            frames = size;
            if (err < 0) {
                if ((err = xrun_recovery(handle, err)) < 0) {
                    exit(EXIT_FAILURE);
                }
                first = 1;
            }
            generate_sine(my_areas, offset, frames, &phase);
            if (commitres < 0 || (snd_pcm_uframes_t)commitres != frames) {
                if ((err = xrun_recovery(handle, commitres >= 0 ? -EPIPE : commitres)) < 0) {
                    exit(EXIT_FAILURE);
                }
                first = 1;
            }
            size -= frames;
        }
    }
}
 
 
static int direct_write_loop(snd_pcm_t *handle,
                 signed short *samples,
                 snd_pcm_channel_area_t *areas)
{
    double phase = 0;
    signed short *ptr;
    int err, cptr;
 
    while (1) {
        generate_sine(areas, 0, period_size, &phase);
        ptr = samples;
        cptr = period_size;
        while (cptr > 0) {
            err = snd_pcm_mmap_writei(handle, ptr, cptr);
            if (err == -EAGAIN)
                continue;
            if (err < 0) {
                if (xrun_recovery(handle, err) < 0) {
                    exit(EXIT_FAILURE);
                }
                break;  
            }
            ptr += err * channels;
            cptr -= err;
        }
    }
}
 
 
struct transfer_method {
    const char *name;
    snd_pcm_access_t access;
    int (*transfer_loop)(snd_pcm_t *handle,
                 signed short *samples,
                 snd_pcm_channel_area_t *areas);
};
 
static struct transfer_method transfer_methods[] = {
    { "write", SND_PCM_ACCESS_RW_INTERLEAVED, write_loop },
    { "write_and_poll", SND_PCM_ACCESS_RW_INTERLEAVED, write_and_poll_loop },
    { "async", SND_PCM_ACCESS_RW_INTERLEAVED, async_loop },
    { "async_direct", SND_PCM_ACCESS_MMAP_INTERLEAVED, async_direct_loop },
    { "direct_interleaved", SND_PCM_ACCESS_MMAP_INTERLEAVED, direct_loop },
    { "direct_noninterleaved", SND_PCM_ACCESS_MMAP_NONINTERLEAVED, direct_loop },
    { "direct_write", SND_PCM_ACCESS_MMAP_INTERLEAVED, direct_write_loop },
    { NULL, SND_PCM_ACCESS_RW_INTERLEAVED, NULL }
};
 
static void help(void)
{
    int k;
    printf(
"Usage: pcm [OPTION]... [FILE]...\n"
"-h,--help  help\n"
"-D,--device    playback device\n"
"-r,--rate  stream rate in Hz\n"
"-c,--channels  count of channels in stream\n"
"-f,--frequency sine wave frequency in Hz\n"
"-b,--buffer    ring buffer size in us\n"
"-p,--period    period size in us\n"
"-m,--method    transfer method\n"
"-o,--format    sample format\n"
"-v,--verbose   show the PCM setup parameters\n"
"-n,--noresample  do not resample\n"
"-e,--pevent    enable poll event after each period\n"
"\n");
        printf("Recognized sample formats are:");
        for (k = 0; k < SND_PCM_FORMAT_LAST; ++k) {
                if (s)
                        printf(" %s", s);
        }
        printf("\n");
        printf("Recognized transfer methods are:");
        for (k = 0; transfer_methods[k].name; k++)
            printf(" %s", transfer_methods[k].name);
    printf("\n");
}
 
int main(int argc, char *argv[])
{
    struct option long_option[] =
    {
        {"help", 0, NULL, 'h'},
        {"device", 1, NULL, 'D'},
        {"rate", 1, NULL, 'r'},
        {"channels", 1, NULL, 'c'},
        {"frequency", 1, NULL, 'f'},
        {"buffer", 1, NULL, 'b'},
        {"period", 1, NULL, 'p'},
        {"method", 1, NULL, 'm'},
        {"format", 1, NULL, 'o'},
        {"verbose", 1, NULL, 'v'},
        {"noresample", 1, NULL, 'n'},
        {"pevent", 1, NULL, 'e'},
        {NULL, 0, NULL, 0},
    };
    snd_pcm_t *handle;
    int err, morehelp;
    snd_pcm_hw_params_t *hwparams;
    snd_pcm_sw_params_t *swparams;
    int method = 0;
    signed short *samples;
    unsigned int chn;
    snd_pcm_channel_area_t *areas;
 
    snd_pcm_hw_params_alloca(&hwparams);
    snd_pcm_sw_params_alloca(&swparams);
 
    morehelp = 0;
    while (1) {
        int c;
        if ((c = getopt_long(argc, argv, "hD:r:c:f:b:p:m:o:vne", long_option, NULL)) < 0)
            break;
        switch (c) {
        case 'h':
            morehelp++;
            break;
        case 'D':
            device = strdup(optarg);
            break;
        case 'r':
            rate = atoi(optarg);
            rate = rate < 4000 ? 4000 : rate;
            rate = rate > 196000 ? 196000 : rate;
            break;
        case 'c':
            channels = atoi(optarg);
            channels = channels < 1 ? 1 : channels;
            channels = channels > 1024 ? 1024 : channels;
            break;
        case 'f':
            freq = atoi(optarg);
            freq = freq < 50 ? 50 : freq;
            freq = freq > 5000 ? 5000 : freq;
            break;
        case 'b':
            buffer_time = atoi(optarg);
            buffer_time = buffer_time < 1000 ? 1000 : buffer_time;
            buffer_time = buffer_time > 1000000 ? 1000000 : buffer_time;
            break;
        case 'p':
            period_time = atoi(optarg);
            period_time = period_time < 1000 ? 1000 : period_time;
            period_time = period_time > 1000000 ? 1000000 : period_time;
            break;
        case 'm':
            for (method = 0; transfer_methods[method].name; method++)
                    if (!strcasecmp(transfer_methods[method].name, optarg))
                    break;
            if (transfer_methods[method].name == NULL)
                method = 0;
            break;
        case 'o':
            for (format = 0; format < SND_PCM_FORMAT_LAST; format++) {
                if (format_name)
                    if (!strcasecmp(format_name, optarg))
                    break;
            }
            if (format == SND_PCM_FORMAT_LAST)
                format = SND_PCM_FORMAT_S16;
            if (!snd_pcm_format_linear(format) &&
                !(format == SND_PCM_FORMAT_FLOAT_LE ||
                  format == SND_PCM_FORMAT_FLOAT_BE)) {
                printf("Invalid (non-linear/float) format %s\n",
                       optarg);
                return 1;
            }
            break;
        case 'v':
            verbose = 1;
            break;
        case 'n':
            resample = 0;
            break;
        case 'e':
            period_event = 1;
            break;
        }
    }
 
    if (morehelp) {
        help();
        return 0;
    }
 
    if (err < 0) {
        return 0;
    }
 
    printf("Playback device is %s\n", device);
    printf(
"Stream parameters are %uHz, %s, %u channels\n", rate, 
snd_pcm_format_name(format), channels);
    printf("Sine wave rate is %.4fHz\n", freq);
    printf("Using transfer method: %s\n", transfer_methods[method].name);
 
    if ((err = 
snd_pcm_open(&handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0) {
 
        return 0;
    }
    
    if ((err = set_hwparams(handle, hwparams, transfer_methods[method].access)) < 0) {
        printf(
"Setting of hwparams failed: %s\n", 
snd_strerror(err));
        exit(EXIT_FAILURE);
    }
    if ((err = set_swparams(handle, swparams)) < 0) {
        printf(
"Setting of swparams failed: %s\n", 
snd_strerror(err));
        exit(EXIT_FAILURE);
    }
 
    if (verbose > 0)
 
    samples = malloc((period_size * channels * snd_pcm_format_physical_width(format)) / 8);
    if (samples == NULL) {
        printf("No enough memory\n");
        exit(EXIT_FAILURE);
    }
    
    areas = calloc(channels, sizeof(snd_pcm_channel_area_t));
    if (areas == NULL) {
        printf("No enough memory\n");
        exit(EXIT_FAILURE);
    }
    for (chn = 0; chn < channels; chn++) {
        areas[chn].addr = samples;
        areas[chn].first = chn * snd_pcm_format_physical_width(format);
        areas[chn].step = channels * snd_pcm_format_physical_width(format);
    }
 
    err = transfer_methods[method].transfer_loop(handle, samples, areas);
    if (err < 0)
 
    free(areas);
    free(samples);
    return 0;
}
 
void * snd_async_handler_get_callback_private(snd_async_handler_t *handler)
Returns the private data assigned to an async handler.
Definition async.c:232
const char * snd_strerror(int errnum)
Returns the message for an error code.
Definition error.c:51
int snd_output_stdio_attach(snd_output_t **outputp, FILE *fp, int _close)
Creates a new output object using an existing stdio FILE pointer.
Definition output.c:188
int snd_pcm_close(snd_pcm_t *pcm)
close PCM handle
Definition pcm.c:776
int snd_pcm_resume(snd_pcm_t *pcm)
Resume from suspend, no samples are lost.
Definition pcm.c:1181
int snd_pcm_hw_params(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
Install one PCM hardware configuration chosen from a configuration space and snd_pcm_prepare it.
Definition pcm.c:951
int snd_pcm_sw_params_set_start_threshold(snd_pcm_t *pcm, snd_pcm_sw_params_t *params, snd_pcm_uframes_t val)
Set start threshold inside a software configuration container.
Definition pcm.c:6792
const char * snd_pcm_format_name(const snd_pcm_format_t format)
get name of PCM sample format
Definition pcm.c:2153
int snd_pcm_hw_params_set_rate_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
Restrict a configuration space to have rate nearest to a target.
Definition pcm.c:4929
int snd_pcm_hw_params_set_channels(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, unsigned int val)
Restrict a configuration space to contain only one channels count.
Definition pcm.c:4694
int snd_pcm_hw_params_set_buffer_time_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
Restrict a configuration space to have buffer time nearest to a target.
Definition pcm.c:5894
snd_pcm_t * snd_async_handler_get_pcm(snd_async_handler_t *handler)
Return PCM handle related to an async handler.
Definition pcm.c:2546
int snd_async_add_pcm_handler(snd_async_handler_t **handler, snd_pcm_t *pcm, snd_async_callback_t callback, void *private_data)
Add an async handler for a PCM.
Definition pcm.c:2516
int snd_pcm_sw_params_current(snd_pcm_t *pcm, snd_pcm_sw_params_t *params)
Return current software configuration for a PCM.
Definition pcm.c:6384
int snd_pcm_start(snd_pcm_t *pcm)
Start a PCM.
Definition pcm.c:1290
int snd_pcm_hw_params_set_format(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_format_t format)
Restrict a configuration space to contain only one format.
Definition pcm.c:4476
int snd_pcm_mmap_begin(snd_pcm_t *pcm, const snd_pcm_channel_area_t **areas, snd_pcm_uframes_t *offset, snd_pcm_uframes_t *frames)
Application request to access a portion of direct (mmap) area.
Definition pcm.c:7422
int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
Fill params with a full configuration space for a PCM.
Definition pcm.c:3983
int snd_pcm_poll_descriptors(snd_pcm_t *pcm, struct pollfd *pfds, unsigned int space)
get poll descriptors
Definition pcm.c:1823
int snd_pcm_prepare(snd_pcm_t *pcm)
Prepare PCM for use.
Definition pcm.c:1235
int snd_pcm_sw_params_set_avail_min(snd_pcm_t *pcm, snd_pcm_sw_params_t *params, snd_pcm_uframes_t val)
Set avail min inside a software configuration container.
Definition pcm.c:6684
int snd_pcm_poll_descriptors_revents(snd_pcm_t *pcm, struct pollfd *pfds, unsigned int nfds, unsigned short *revents)
get returned events from poll descriptors
Definition pcm.c:1865
int snd_pcm_hw_params_set_rate_resample(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, unsigned int val)
Restrict a configuration space to contain only real hardware rates.
Definition pcm.c:4980
int snd_pcm_hw_params_set_access(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, snd_pcm_access_t access)
Restrict a configuration space to contain only one access type.
Definition pcm.c:4379
snd_pcm_state_t snd_pcm_state(snd_pcm_t *pcm)
Return PCM state.
Definition pcm.c:1083
int snd_pcm_sw_params(snd_pcm_t *pcm, snd_pcm_sw_params_t *params)
Install PCM software configuration defined by params.
Definition pcm.c:1001
snd_pcm_sframes_t snd_pcm_avail_update(snd_pcm_t *pcm)
Return number of frames ready to be read (capture) / written (playback)
Definition pcm.c:3050
int snd_pcm_dump(snd_pcm_t *pcm, snd_output_t *out)
Dump PCM info.
Definition pcm.c:2429
int snd_pcm_open(snd_pcm_t **pcmp, const char *name, snd_pcm_stream_t stream, int mode)
Opens a PCM.
Definition pcm.c:2744
int snd_pcm_hw_params_set_period_time_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params, unsigned int *val, int *dir)
Restrict a configuration space to have period time nearest to a target.
Definition pcm.c:5270
int snd_pcm_hw_params_get_buffer_size(const snd_pcm_hw_params_t *params, snd_pcm_uframes_t *val)
Extract buffer size from a configuration space.
Definition pcm.c:5948
int snd_pcm_hw_params_get_period_size(const snd_pcm_hw_params_t *params, snd_pcm_uframes_t *val, int *dir)
Extract period size from a configuration space.
Definition pcm.c:5325
snd_pcm_sframes_t snd_pcm_writei(snd_pcm_t *pcm, const void *buffer, snd_pcm_uframes_t size)
Write interleaved frames to a PCM.
Definition pcm.c:1569
snd_pcm_sframes_t snd_pcm_mmap_commit(snd_pcm_t *pcm, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames)
Application has completed the access to area requested with snd_pcm_mmap_begin.
Definition pcm.c:7535
int snd_pcm_poll_descriptors_count(snd_pcm_t *pcm)
get count of poll descriptors for PCM handle
Definition pcm.c:1759
int snd_pcm_wait(snd_pcm_t *pcm, int timeout)
Wait for a PCM to become ready.
Definition pcm.c:2903
int snd_pcm_sw_params_set_period_event(snd_pcm_t *pcm, snd_pcm_sw_params_t *params, int val)
Set period event inside a software configuration container.
Definition pcm.c:6727